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A reappraisal is made of the Brown & Michael (1954, 1955) equation that is widely 
used to model high-Reynolds-number vortex shedding in two dimensions by rectilinear 
vortices of time-dependent circulations. It is concluded that the equation introduces an 
unbalanced and unacceptable surface force that can significantly influence predicted 
flow characteristics. A corrected equation is derived which removes this force, and is 
applied to determine the sound generated at low Mach numbers when a line vortex 
translates around the edge of a rigid half-plane. The solution of this problem in the 
absence of vortex shedding (Crighton 1972) is extended by permitting shedding to 
occur at the edge in accordance with the unsteady Kutta condition. The shed vorticity 
is assumed to roll-up into a concentrated core whose motion is calculated by both the 
emended and original Brown & Michael equations. The two models exhibit large 
qualitative differences in the predicted wake flow near the edge ; both predict significant 
reductions in the radiated sound, but the reduction is smaller by about 4 dB for the 
emended Brown & Michael equation. 

1. Introduction 
Two-dimensional theoretical approximations of high-Reynolds-number vortex 

shedding from an edge are frequently based on a formula proposed by Brown & 
Michael (1954, 1955) for estimating the lift on a delta wing. The continuous shedding 
of vorticity from the edge is modelled by means of a line (or ‘point’) vortex (or an 
appropriate sequence of vortices) whose position and circulation both depend on time, 
the instantaneous value of the circulation being determined by application of the Kutta 
condition at the edge. Separation from the edge is assumed to occur in the form of a 
thin sheet of vorticity of infinitesimal circulation, that rolls up into a concentrated core; 
the influence of vortex shedding is calculated from a potential flow representation of 
the interaction of this core of variable strength with the surface and any other flow 
structures. Brown & Michael observed that when the circulation r(t) of the core varies 
with time t ,  the vortex sheet connecting it to the edge must be regarded as a ‘branch- 
cut’ across which the pressure increases discontinuously by po dr/dt,  where po is the 
density of the fluid. They claimed that the influence of this distributed force could be 
compensated for by requiring the core to translate at a velocity that departs from that 
of the fluid in its immediate neighbourhood, such that the resulting Joukowski lift on 
the core exactly balances the net force on the connecting sheet, and used this hypothesis 
to derive the equation of motion of the core. 

This procedure has been refined by Mangler & Smith (1959), and by Smith (1959, 
1968) in further studies of the steady-delta-wing problem, and has been extended to the 
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related unsteady case by Dore (1966), Lowson (1963), Randall (1966) and Tavares & 
McCune (1993). It has also formed the basis of many numerical stimulations of 
unsteady vortex shedding (e.g. Clements 1973; Graham 1980; Cortelezzi & Leonard 
1993; Cortelezzi, Leonard & Doyle 1994), and Rott (1956) has applied it to consider 
the interaction of a shock wave with an edge. Peters (1993) and Cortelezzi (1995) have 
demonstrated reasonable agreement between predictions of the Brown and Michael 
model and those obtained from more elaborate computational schemes. However, in 
an examination of the sound produced by vortices in low Mach number duct and 
cavity flows, Peters (1993) and Peters & Hirschberg (1993) have pointed out that, 
although the Brown & Michael formulation successfully eliminates the net force 
exerted on the fluid by the vortex core and connecting sheet, there exists a residual 
couple whose action is to create an additional surface force over and above that 
predicted by the usual potential flow theory. The couple is equivalent to a quadrupole 
source, whose influence on sound generation is ignored in the conventional theory of 
vortex sound. In flow of characteristic Mach number M < 1, and in the absence of 
solid boundaries, the efficiency of an aerodynamic quadrupole (i.e. the ratio of the 
acoustic power to an effective rate of production of unsteady kinetic energy in the 
source region) is proportional to M 5  (Lighthill 1952). When the same quadrupole is 
adjacent to a solid surface, however, the efficiency is usually much larger, being of 
order M 3  when the surface is acoustically compact (small compared to the acoustic 
wavelength (Curle 1955)) or of order M 2  when the quadrupole is near the edge of a 
large, nearly planar surface whose edge thickness is compact (Ffowcs Williams & Hall 
1970; Crighton & Leppington 1970, 1971). This increase in efficiency occurs because 
the quadrupole produces an unsteady surface force which is equivalent to a much more 
powerful aerodynamic sound source of dipole type. 

In this paper we argue that an improved representation of vortex shedding in terms 
of a concentrated core and connecting sheet will be obtained if the Joukowski lift force 
on the core is required to balance both the net pressure force on the connecting sheet 
and the surface force induced by the pressure and lift forces. Then the single vortex 
model of continuous vortex shedding does not involve a spurious, additional surface 
force, and the actual force exerted on the surface can be calculated in the usual way, 
in terms of the velocity potential of the motion induced by the core together with 
contributions from any other sources of motion in the flow. 

The modification of the Brown & Michael equation of motion of the vortex core 
is derived in $2. Application is made to a generalization of a canonical aeroacoustic 
problem, originally discussed by Crighton (1972), of the sound generated in the 
absence of mean flow when a rectilinear vortex of circulation To parallel to the edge of 
a semi-infinite plane passes around the edge under the influence of image vortices. If 
1 is the distance of closest approach of the vortex to the edge, the wavelength of the 
sound is proportional to the time z 12/To required for the vortex to pass by the edge, 
and is very much larger than the vortex distance from the edge provided r,,/l< co, 
where c, is the speed of sound. In a first approximation the motion of the vortex can 
then be calculated as for incompressible flow, and Crighton (1972) determined the 
resulting acoustic radiation by matching the incompressible edge flow with an 
appropriate outgoing solution of the acoustic wave equation. The motion was assumed 
to be entirely inviscid, and no attempt was made to eliminate edge singularities of the 
velocity and pressure. In $ 3  the significance of the modified Brown & Michael 
equation is illustrated by incorporating vortex shedding into Crighton’s problem by 
imposing the Kutta condition at the edge. The calculation is performed for the original 
and modified forms of the Brown & Michael equation. In either case, vortex 
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shedding leads to a significant reduction in the radiated sound, by about 11 dB for the 
original equation and 7 dB for the emended equation. Although the calculated acoustic 
pressure signatures are very similar, there is a profound qualitative difference between 
the trailing-edge wake flows predicted by the two equations. 

2. The modified Brown & Michael equation 
2.1. The Brown h Michael equation 

Consider two-dimensional incompressible flow in the neighbourhood of a rigid body 
S (figure 1). A distribution of vortices C produces unsteady motion relative to S that 
results in vortex shedding from the edge 0. The net circulation around a closed contour 
enclosing S and all of the vorticity may be assumed to vanish, so that the fluid is at rest 
at infinity. For simplicity attention is confined to the case in which S is at rest, although 
the following argument is easily extended without change in the conclusions to 
situations where S is in unsteady translational motion (or where S is immersed in a 
pulsatile flow that might be produced by long wavelength sound). 

Following Brown & Michael (1954, 1955) vortex shedding is modelled by introducing 
a point vortex of variable circulation r(t) whose axis is at x = xr(t) with respect to the 
rectangular coordinate system x = (xl, x,). The vortex is ‘fed’ continuously with 
additional vorticity which passes along a connecting sheet from 0. The circulation of 
the connecting sheet is assumed to be negligible compared to r. In applications r is 
required to vary monotonically with time, and the vortex is usually assumed to be 
‘ released’ from the edge if and when dr /d t  changes sign, following which it moves with 
the flow as a ‘free’ vortex with r equal to its value at the time of release. The vortex 
then becomes a member of the distribution C, and a new vortex is released from the 
edge. We are here concerned only with the motion of r prior to release. 

Let u(x, t )  denote the fluid velocity, and V(t) = dx,/dt the translational velocity of 
r. The motion is assumed to be inviscid, except insofar as viscosity ultimately is 
responsible for the generation of vorticity at 0 at a rate determined by the Kutta 
condition. The vortex r a n d  the connecting sheet do not obey the inviscid momentum 
equation 

where po is the fluid density and p denotes pressure. They can be excluded from the 
domain of validity of (2.1) by enclosing them within a control surfaceflx, t )  = 0, shown 
by the broken curve in the figure, which moves relative to the fluid so as always to 
enclose r and the connecing sheet. All of the remaining vortices may be supposed to 
lie outside the control surface. It may be assumed thatflx, t )  3 0 according as x lies in 
the exterior/interior of the control surface, and a formal extension of the range of 
application of (2.1) to the whole fluid region can be derived by multiplying by H W ,  
where H(x)  is the Heaviside unit function ( = 1 or 0 according as x 2 0), and rewriting 
the equation in the form 

po Du/Dt + V p  = 0, (2.1) 

The terms on the right-hand side of this equation represent forces distributed over 
the control surface, since V H  = VfS(f ) ,  and D H ( f ) / D t  = ( u -  V )  - V H W ,  where 
V(x, t )  is the velocity of motion of the control surface, which satisfies 

af/at+ V .  V f  = 0. 
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FIGURE 1. Schematic of the Brown & Michael model of vortex shedding 
from the edge of a surface S. 

These forces can be evaluated by introducing explicit expressions for the pressure and 
velocity u .  Let r be represented by the concentrated vorticity distribution 

LI = rkqx-x,), (2.3) 

where k is a unit vector directed out of the plane of the paper in figure 1. The velocity 
in f > 0 in the neighbourhood of r is then given by 

where uo denotes the fluid velocity when the local (free field) velocity induced by r is 
discarded, and includes, for example, contributions induced by the vortices C, by 
images in the surface, and by any mean flow. A 'free' vortex of constant circulation 
at x = x, would translate at velocity uo. Similarly, the pressure may be calculated from 
Bernoulli's equation: p/po = -i3g5/i3t-$1', where in the immediate vicinity of I' the 
leading-order contribution from the velocity potential 4 is 

4 % Re {( - ir/2x) In ( z  - z,)}, z = x1 + ixz, zr = xI1 + ixT2. (2.5) 

If the control surface is allowed to shrink down to the connecting sheet and vortex 
r, the limiting form F,(x,t), say, of the right-hand side of (2.2) may be found by 
substituting these expressions for u and p and integrating over a neighbourhood 
containing the control surface. By hypothesis, the velocity is continuous across the 
connecting sheet, but the velocity potential is discontinuous because of the time 
dependence of I' in the component of 4 shown explicitly in (2.5). An elementary 
calculation shows that 

where xI is distance from the connecting sheet measured in the direction of the local 
normal n, s, is the total length of the sheet (between 0 and r), and s is the distance 
measured along the sheet from 0. The first term on the right-hand side is concentrated 
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at the vortex r, and is the reaction on the fluid to the Joukowski lift force experienced 
by r; the second term is the pressure force exerted on the fluid because of the pressure 
jump across the connecting sheet. 

Brown & Michael (1954, 1955) choose the translational velocity V = dx,/dt of r by 
requiring the instantaneous net force Fr(x, t )  dx, dx, to vanish. The integration is 
readily performed (with the aid of (2.3)) and yields the Brown & Michael equation 

dx, x,dr -+--= v 
dt r dt '' 

2.2. The emended Brown & Michael equation 

According to Brown & Michael, when xr is determined by (2.7) the fluid motion may 
be calculated in terms of the velocity potential associated with the point vortices C and 
r (including appropriate contributions from images in S )  by the usual method of 
potential flow theory. However, condition (2.7) does not guarantee the vanishing of the 
aggregate force exerted on the fluid by Fr(x, t), since this distributed system of forces 
generally involves an unbalanced couple which generates a reaction force FF on S 
whose influence is not included in the potential flow equations. Thus, if it is desired to 
model the principal effects of vortex shedding solely in terms of the velocity potential 
of r and the free vortices C it is actually necessary to require that 

FF + q ( ~ ,  t) dx, dx, = 0. (2.8) i 
This condition implies that the Brown & Michael equation of motion (2.7) must 

be modified, and to do this it is convenient to cast the momentum equation (2.2) (with 
the right-hand side replaced by (2.6)) in Crocco's form: 

where o, = curlv is the vorticity field C. The limiting form of the right-hand side as 
the control surface f = 0 shrinks down to the connecting sheet and vortex r is easily 
calculated by using (2.4), which yields 

where o = w,+sZ. In the usual way, the fluid velocity v on the right-hand side is 
evaluated at a point vortex by excluding the free-field, self-potential contribution of the 
vortex. In the particular case of the vortex r, v is not the same as the translational 
velocity V of r unless r is constant. 

The momentum equation in the form (2.9), but in the absence of Fr/po, was used by 
Howe (1989) to determine the component 4 of the net force F exerted on the fluid; the 
argument is unchanged by the presence of the additional term on the right-hand side, 
and supplies 

-F; = -po o A v - OXi dx, dx, + F,. OXi dx, dx,, J J (2.10) 

where Xi(x)  depends only on the shape of the solid S, and is the velocity potential of 
ideal, incompressible flow past S that has unit speed in the i-direction at large distances 
from S and zero circulation about S. The first integral on the right-hand side is the net 
force on the fluid associated with the motion produced by the vorticity (including r); 
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it is equivalent to the usual result of potential flow theory. Because the fluid is at rest 
at infinity, and there are no external forces, this force is actually applied at the surface 
S.  The second term is the net force on the fluid produced by the distributed force 
system Fr including the reaction force FF at S .  If we want to represent the dynamics 
of the flow entirely in terms of the vortices oz and r, it is therefore necessary that 

F, OXi dx, dx, = 0 (2.11) 

for all directions i. This is equivalent to (2.8), where the ith component of the surface 
force is 

s 
s FFi E l$ * V(Xi  - xi) dx, dx,. 

Condition (2.11) determines the modified equation of motion of r. 

function Yi (x )  conjugate to Xi(x), which satisfies the Cauchy-Riemann relations 
Equation (2.1 1) can be expressed in differential form by introducing the stream 

where it may be assumed that !Pi = 0 on S.  By using these formulae and equation (2.6) 
it is now straightforward to derive the emended Brown & Michael equation 

(2.12) 

2.3. Production of sound at low Mach numbers 
An incompressible approximation to the equations governing an unsteady flow that 
generates sound can be used provided the characteristic flow Mach number is 
sufficiently small. In this limit the momentum equation (2.9) can be combined with the 
equation of continuity to yield the equation of aerodynamic sound generation in the 
form (Howe 1975) 

{a2/ct at2 - V’} B = div (o A u)  - div (Fr/po), (2.13) 

where B = p / p o  +:uz is the total enthalpy, and where the acoustic pressure p z po B in 
the linearly perturbed flow at large distances from the source region. The solution of 
this equation can be expressed in terms of a Green’s function G(x ,y ,  t-7) that has 
vanishing normal derivative on S (Morse & Feshbach 1953), which yields in the 
acoustic far field 

where the integration is over the fluid and all times 7. 
When S is acoustically compact (small compared to the acoustic wavelength) 

G(x,  y ,  t - 7) may be approximated by the compact Green’s function, which identifies 
the principal source of sound with an equivalent distribution of dipoles on S,  whose net 
strength is the unsteady surface force. For an observer at x at large distances from S,  
and for entirely two-dimensional motions, it is known that (Howe 1975) 
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where r = (x: + and Y = (Xl(y), X2@)).  It follows from this and the equation of 
motion (2.1 l), that the dipole sound produced by F, vanishes identically. Thus, the 
emended Brown & Michael equation removes the spurious radiation noted by Peters 
& Hirschberg (1993) and Peters (1993) to be produced by the quadrupole formed by 
the Joukowski lift on T and the force on the connecting sheet. 

3. Radiation from vortex motion near a half-plane 
3.1.  No vortex shedding 

To illustrate the implications of the emended Brown & Michael formula, consider the 
sound generated when a point vortex of circulation r,, say, translates at infinitesimal 
Mach number past the edge of a rigid half-plane. This problem was first formulated by 
Crighton (1972) who solved it by the method of matched asymptotic expansions, 
according to which the vortex motion is calculated in a first approximation as for an 
inviscid, incompressible fluid. 

In the absence of vortex shedding from the edge, the motion of To is governed by the 
velocity field of a distribution of images in the surface. When r, > 0, the vortex 
traverses in a clockwise sense the symmetric path illustrated in figure 2(a), where the 
half-plane is taken to be the negative x,-axis and the time origin has been adjusted to 
coincide with the instant at which the vortex crosses the x,-axis, when its distance from 
the edge is a minimum and equal to 1. Far from the edge the motion is parallel to the 
plane at speed U = T0/87cl, and the points marked on the trajectory indicate the 
position of the vortex at different non-dimensional times Ut/ l .  Crighton (1972) showed 
that the position (Xnl,X,,) = (xol/Z,xo2/l) of the vortex is given by 

and that the leading approximation to the acoustic pressure p(r ,  8, t )  at large distances 
r from the edge in direction 8 (see figure 2) is 

where the term in square brackets is evaluated at the retarded time t - r / co .  The non- 
dimensional pressure signature p / { p ,  U'(l/r)l/'sin (&9)} is illustrated in figure 2 (b), 
which indicates that significant radiation is produced only during the interval 
-4  < U t / l <  4 when the vortex is accelerating around the edge. When r is large 
the total radiated acoustic energy is given by 

E, = ~ ~ ~ ~ ~ { ~ 2 ( r , H , t ) / p , c , ) r d H d t  = y7cpo U2Ml2 ,  (3.3) 

where the Mach number M = U/c ,  4 1 .  
When the path x,(t) of the vortex is known the acoustic pressure is readily 

obtained in the form (3.2) by invoking the general formula (2.14), with F, = 0 and 
w = To kd(x-x,), and substituting the following expression for the compact Green's 
function for a rigid half-plane (Howe 1975) 
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FIGURE 2. (a) Vortex motion in the absence of vortex shedding. 1 is the distance of closest approach 
of the vortex to the edge. (b) Acoustic pressure signature in the absence of shedding, as a function 
of the retarded time [ t ]  = t - r / c o .  

The function $*(x) is the real part of the analytic function 

$*(x)+i$*(x) = -iz1/2, z = x,+ix2, (3 15) 

which will be recognized as the complex potential of ideal, incompressible flow around 
the edge of the half-plane along (parabolic) streamlines ~ * ( x )  = constant. The formula 
(3.4) is applicable provided the distance lyl of the aeroacoustic source from the edge 
is small compared to the acoustic wavelength. 

By using (2.14) and (3.4), together with the Cauchy-Rieman equations, the radiation 
can be expressed in the alternative general form 

p z Po -sin ro (+O) [v - V$*] ( r  + a), rc rl” 

where the term in square brackets is evaluated at the retarded position x,(t-r/co) of 
the vortex, and u is the flow velocity at the vortex core. This result will be used below. 

3.2. Vortex shedding 
The influence of vortex shedding will be estimated by modelling the continuously shed 
vorticity by a concentrated core (point vortex) of circulation I‘(t). It will be seen a 
posteriori that r(t) varies monotonically with time, and therefore, that it is not 
necessary to postulate the shedding of more than one vortex. The instantaneous value 
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of Tis  determined by the Kutta condition. The equations of motion of the incident and 
shed vortices can be derived in the usual way by mapping the z-plane (z = x1 + ix,) cut 
along the negative real axis (the half-plane) onto the upper c-plane by means of the 
transformation 6 = izl/'. If zo and z, are the respective locations of To and r, the Kutta 
condition applied at the edge z = 0 yields 

where the asterisk denotes the complex conjugate. This formula shows that the 
circulations r,, r are always opposite in sign. 

The motion of the shed vortex core is governed by (2.12). The case i = 1 supplies the 
equation for the velocity component dx,/dt normal to the half-plane, since the stream 
function of flow at unit speed parallel to the xl-axis is Yl = x,. For i = 2, Y2 must be 
defined by the limiting value as a --f 03 of the stream function for a plate of finite length 
2a in the x,-direction, namely, Y2 = lima+m Im { - i(z(z + 2a)1/2} M Im { - i(2az)'/')}. 
However, the length a does not appear in the equation of motion, because (2.12) is 
homogeneous in !Pi. It will be observed that this limiting value of Y, is proportional 
to the function $* in the general solution (3.6); this must be the case if no dipole 
radiation is to be produced by the Joukowski lift on r and the connecting sheet force. 
By setting dr /d t  = 0 in (2.12), we obtain also the usual ('free' vortex) equation of 
motion for the incident vortex To. When the complex positions of the vortices are non- 
dimensionalized by the distance 1 of closest approach of To to the edge in the absence 
of shedding ($3.1), the simultaneous equations of motion may be rearranged into the 
complex forms 

dZ; + (lZA + Z;) d r  i(r/T,) + 2i(T/To) 
d T  r d T = T  Z,+lZ,l 

where 2, = zo/l, 2, = z,/l, T = U t / l =  r, t /8d2. 
To compare the solution of these equations with the motion of r, predicted in $3.1 

in the absence of shedding, they are integrated from a large and negative value of T 
with the initial conditions on 2, = X,, + iX,, defined by (3.1). Vortex shedding has a 
negligible effect on r, when T is large and negative, and the solutions of (3.8 a, b) are 
insensitive to the precise initial value of 2, = X, + iXr2 used in the computation. We 
have considered two alternative sets of conditions. In the first we take X ,  = 0, and 
select an arbitrarily small, but non-zero value for Xr,. For the second approach, we 
observe that the final term on the right-hand side of (3.8~)-ti/(2(2,)~'~ ITl3I2) as 
T+- co, for which equation (3 .8~)  has the similarity solution 

where 0 = n-cos-l(5/17), 

which is then used to define Z, when T is large and negative. The integrations have 
been performed using a standard fourth-order Runge-Kutta scheme. The procedure is 
stable, and the accuracy was checked by reducing the step size until successive 



98 M .  S.  Howe 

Util = -5 

-4 

FIGURE 3. (a) Incident 

Plane 

I I I I I I I c 
- - 

I ‘\Shed vortex r 

-- I 
\ 
\ I 

I ‘. 
I 
I 0 .  

/ .’ *. Noshedding 

0 4 8 
U[t]ll 

and shed vortex traiectories determined bv the emended Brown & Michael 
\ I  

equations (3.8). (b )  -, The acoustic pressure signature, compared with the contributions from the 
incident and shed vortices (broken curves) and . . ., in the absence of vortex shedding. 

predictions of 2, and 2, differed by less than The trajectories of the incident and 
shed vortices are depicted in figure 3(a), with the vortex positions indicated at several 
values of T for comparison with figure 2(a). 

Equation (3.6) for the acoustic pressure can be applied to the vortices I‘,, and r 
separately to calculate their contributions to the sound. In each case v is the fluid 
velocity evaluated at the vortex core after subtracting out the self-potential contribution 
of the type (2.5). This velocity coincides with dx,/dt for the incident vortex I‘,, but is 
not equal to dx,/dt for the shed vorticity, except at large times when T(t) becomes 
constant. The solid curve in figure 3(b) is the net acoustic pressure signature 
p/{p,  Uz(l/~)1’2 sin (i8)); the broken curves are the separate contributions from the 
vortices, which are effectively equal and opposite for T > 0, when the amplitude of the 
sound becomes very much less than in the absence of shedding (shown dotted in the 
figure). Very little sound is generated by the shed vorticity prior to the arrival of the 
incident vortex at the edge, and the acoustic pressure then coincides with that in the 
absence of shedding. 

The growth of the shed vortex circulation is depicted by the solid curve in figure 4. 
Shedding does not become significant until about U t / l =  - 5 ,  and is effectively 
complete by U t / l =  2. At that time, the incident and shed vortex form a silent self- 
propelling vortex pair. Reference to figure 3 (b) reveals that the amplitude of the sound 
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FIGURE 4. Time dependence of the circulation of the shed vortex; the broken curve is the 
corresponding prediction using the original Brown & Michael equation. 

that each vortex would make in isolation is large; the net pressure is small, however, 
because both vortices are cutting across contours of constant values of $* at essentially 
the same rate, and equation (3.6) shows that it is precisely this rate of cutting of the 
streamlines of an ideal edge flow that determines the amplitude of the sound. 

Similar general conclusions obtain when the vortex paths are computed from the 
original Brown & Michael equation (2.7) (formally equivalent to omitting lZ,l from 
the coefficient of dI'/dT in (3.8a)). The variation of the shed vortex strength (see figure 
4) is very similar in the two cases, but the vortex trajectories predicted by the Brown 
& Michael equation (figure 5a) are very different, and characterize a flow that is 
deflected sideways by the plane, of the type that might be expected if a net force were 
to be applied to the flow by the plane. The predicted acoustic amplitude (calculated, 
as before, from (3.6) with u equal to the fluid velocity at a vortex after subtraction of 
the singular self-potential term) is also very much smaller than for the emended 
equation of motion, although the pressure signatures are qualitatively the same. The 
integration with respect to time in (3.3) can be effected numerically to compare the 
radiated acoustic energy E with that in the absence of shedding. We find E/Eo z 0.18 
(z - 7.5 dB) when the motion is governed by the emended equation (figure 3), but is 
much smaller, E/Eo z 0.08 (z - 11 dB), for the Brown & Michael formulation. 

It is interesting to note that these nonlinear calculations tend to confirm the principal 
hypothesis of existing approximate theories of trailing-edge noise (Chandiramani 
1974; Chase 1972, 1975), namely that, for a thin trailing edge immersed in an 
essentially uniform mean flow, sound is produced by the interaction with the edge of 
surface pressure fluctuations associated with nonlinear mechanisms in the boundary 
layer. According to linear theory, when both incident and shed vorticity are assumed 
to convect at the same mean free-stream velocity, the sound pressure produced at the 
trailing edge by the incident and shed vorticity are equal and opposite. 
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4. Conclusion 
Brown & Michael (1954, 1955) obtained an equation governing the motion of a 
rectilinear vortex of variable strength that has been widely applied in the numerical 
modelling of vortex shedding from rigid bodies in incompressible flow. It has been 
argued in this paper that the equation is inconsistent with the requirement that no 
extraneous forces be introduced by the model. An emended equation of motion has 
been proposed which eliminates such forces. Our application of the emended equation 
to the problem of sound generation by a vortex interacting with the edge of a rigid 
plane reveals a large qualitative difference between the predicted wake flow (i.e. the 
vortex trajectories) and the flow derived from the Brown & Michael equation. Both 
models imply that vortex shedding at the edge is responsible for a significant decrease 
in the radiated sound, but the reduction predicted by Brown & Michael is greater by 
nearly 4 dB. 
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